Results on Diffraction at CDF

Angela Wyatt
University College London
for the CDF Collaboration

- → Introduction
- Improvements for run II
- → Diffractive Dijets
- Double Pomeron Exchange Dijets
- → Exclusive Diffraction
- → Conclusions

Diffraction at CDF in Run I

Diffraction

Experimentally: events containing a rapidity gap (or tagged p)

- associated with pomeron exchange

(carries vacuum quantum numbers)

Run I Results

CDF made a wide range of diffractive measurements in Run I:

Soft Diffraction
Single diffraction
Double diffraction
Multi-gap events

<u>Hard Diffraction</u>

Single diffraction: dijets, W, b-quark, J/ψ
Double diffraction: jet-gap-jet
Double pomeron exchange: dijets

Improvements for run II

The Miniplug Calorimeter

New Miniplug Detector enables:

- Select diffractive events from hitemultiplicity
- Measure very forward jet energies

Diffractive dijet production in run l

 ξ = Fraction of proton's mmtm carried by pomeron β = Fraction of pomeron's mmtm carried by parton

$$X_{bj} = \xi \beta$$

LO QCD: $\frac{\sigma(SD_{jj})}{\sigma(ND_{jj})} = \frac{F_{jj}^{D}(x)}{F_{jj}(x)}$

Diffractive structure function also measured at HERA ⇒ expectation for Tevatron

F_{jj}^D(β) supressed relative to expectation from HERA parton densities

Diffractive Dijets: event selection

Single diffractive (SD) dijets:

- •Trigger on roman pot hit plus tower > 5 GeV
- •Select 2+ jets: corrected $E_{_{t}} > 5 GeV$, $|\eta_{_{1,2}}| < 2.5$

Non diffractive (ND) dijets: As above, no roman pot hit. (control sample).

Variables:

$$x_{Bj} = \frac{\sum_{i} E_{T}^{jet} e^{-\eta_{jet}}}{\sqrt{S}}$$

 ξ see next slide.

Measurement of ξ

- Currently measured from calorimetry
- Sum over all calo. towers ($|\eta| < 5.1$) with $E_{\scriptscriptstyle +} > 100$ MeV
- •MP E scale: $\pm 25\% \rightarrow \Delta(\log \xi) \pm 0.1$
- RP tracking soon

$$\xi = \frac{M_X^2}{S} \approx \frac{\sum_{i} E_T^i e^{-\eta_i}}{\sqrt{S}}$$

Normalised in this region (BG) 10⁵ CDF Run II Preliminary -J5 ($E_T^{tower} > 5 \text{ GeV}$) Events (J5 norm to $0.2 < \frac{\zeta^{X}}{\zeta^{D}}$ <3) Peak at $\xi = 1$ from • ND overlap events 10³ 10² $\frac{d\sigma}{d\xi} \propto \frac{1}{\xi} \to \frac{d\sigma}{d(\log \xi)} = Constant$ Approx. flat at $\xi < 0.1$ 10

Diffractive Dijets: kinematic properties

Jets in SD compared to ND:

- → Slightly steeper E, distribution •
- → Boosted in direction of outgoing proton ($\xi << 1$)
- → More back to back in ϕ •

Diffractive Dijets: structure function

SD/ND dijets - different ξ ranges

- Good agreement with run I in normalisation and x_{Bj} dependence
- No ξ dependence observed 0.03 < ξ < 0.1 (as in Run I)

SD/ND dijets - different Q^2 ranges

• No significance Q² dependence observed 100 < Q² < 1600 GeV²

Double Pomeron Exchange in run I

Tagged \bar{p} : 0.035 < ξ < 0.095

rapidity gap p side: $0.01 < \xi < 0.03$

2 jets $E_{\tau} > 7 \text{ GeV}$

⇒ 130 events

Mass Fraction:

$$R_{jj/X} = \frac{M_{jj}^{cone}}{M_{x}}$$

exclusive: $0.7 < R_{_{ii/X}} < 0.9$

Inclusive $\sigma = 43.6 \pm 4.4 \text{ (stat)} \pm 21.6 \text{ (syst)} \text{ nb}$

Exclusive σ < 3.7nb (95% C.L)

Interest in Exclusive DPE

• Use to test calculations or to normalise calculations of diffractive Higgs:

Exclusive dijets predict around 1nb run I cuts 60pb 25 < $E_{_{+}}$ < 35 GeV, $\Delta\eta$ < 1.

Enberg, Ingelman and Timneanu Phys Rev Lett 89 (2002) 081801

DPE Dijets: event selection

Trigger Requirement

- Tag p in roman pots
- Gap on p-side in BSC (5.5 < η < 7.5)
- Cal tower E₊> 5 GeV
- 26 pb⁻¹ prescaled x5

Additional Event selection

- $0.03 < \xi_{\overline{p}} < 0.1$
- Gap in miniplug $(3.6 < \eta < 5.1)$
- N(good vertex) <= 1
- No significant missing E₊
- 2+ jets (cone 0.7) $E_{t} > 10 \text{ GeV}$ (corrected E_{t}), $|\eta_{12}| < 2.5$

x200 improvement in stats on run I

DPE Dijets: kinematic properties

Jets in DPE compared to SD:

- → Fairly similar E₊ distribution
- → Jets now almost central again ($\xi_{\overline{p}}$ ~ $\xi_{\overline{p}}$)
- → Even more back to back in ϕ •

DPE Dijets: Mass Fraction

CDF Run II Preliminary

R_{jj} will be large for exclusive events
 (but <1 due to out of cone energy)
 Smooth distribution

Min E _t (jet1)	Cross Section (R _{ii} > 0.8)
10 GeV	$970 \pm 65 \text{ (stat)} \pm 272 \text{ (syst) pb}$
25 GeV	34 ± 5 (stat) ± 10 (syst) pb

Note:

Here corrections for underlying event or to get the parton energy are not applied in the calculation of $\,\mathrm{M}_{_{\parallel}}$

DPE Dijets: event pictures

Outlook for CDF Diffraction

- Diffractive Structure Functions:
 - obtain ξ and Q^2 dependence
 - measure for proton side of DPE events (factorisation test)
- Double Pomeron Exchange:
 - J/ψ production
 - bb jets
 - exclusive low mass production
- Gaps between jets
 - miniplug gives jet separation of 9 units in rapidity
- Multigap hard production

Exclusive Diffraction

$$p \bar{p} \rightarrow p + X + \bar{p}$$

- So far searches for:
 X = jet-jet
- Currently trigger on: $X = \chi_c$ (J/ ψ trigger) $X = \gamma \gamma$

much lower cross section but cleaner

 Developing trigger for other low-mass states Possible candidate (???) for $p\bar{p}\to p+\chi_c+\bar{p}\to p+J/\psi+\bar{p}\to p+\mu\mu\gamma+\bar{p}$ - exclusive event with J/ ψ and a conversion

Summary

- CDF detector working beautifully.
 New BSC, mini-plug fully working, calibrated.
- Run II diffractive measurements consistent with Run I
- New Results:
 - Ratio of SD to ND rates shows no significant Q² dependence
 - Huge increase (x200) in double pomeron exchange dijets sample
 - Dijets seen in exclusive region, but smooth distribution.
- Prospects look great for many new/improved measurements.